419 research outputs found

    Blood flow characteristics after aortic valve neocuspidization in paediatric patients: a comparison with the Ross procedure.

    Get PDF
    AIMS: The aortic valve (AV) neocuspidization (Ozaki procedure) is a novel surgical technique for AV disease that preserves the natural motion and cardiodynamics of the aortic root. In this study, we sought to evaluate, by 4D-flow magnetic resonance imaging, the aortic blood flow characteristics after AV neocuspidization in paediatric patients. METHODS AND RESULTS: Aortic root and ascending aorta haemodynamics were evaluated in a population of patients treated with the Ozaki procedure; results were compared with those of a group of patients operated with the Ross technique. Cardiovascular magnetic resonance studies were performed at 1.5 T using a 4D flow-sensitive sequence acquired with retrospective electrocardiogram-gating and respiratory navigator. Post-processing of 4D-flow analysis was performed to calculate flow eccentricity and wall shear stress. Twenty children were included in this study, 10 after Ozaki and 10 after Ross procedure. Median age at surgery was 10.7 years (range 3.9-16.5 years). No significant differences were observed in wall shear stress values measured at the level of the proximal ascending aorta between the two groups. The analysis of flow patterns showed no clear association between eccentric flow and the procedure performed. The Ozaki group showed just a slightly increased transvalvular maximum velocity. CONCLUSION: Proximal aorta flow dynamics of children treated with the Ozaki and the Ross procedure are comparable. Similarly to the Ross, Ozaki technique restores a physiological laminar flow pattern in the short-term follow-up, with the advantage of not inducing a bivalvular disease, although further studies are warranted to evaluate its long-term results

    Clinical utility of dual energy computed tomography in gout: Current concepts and applications

    Get PDF
    Summary. Gout is the most common inflammatory arthritis and is increasing in prevalence and incidence in many countries worldwide. Dual Energy Computed Tomography (DECT) has a high diagnostic accuracy in established gout, but its diagnostic sensitivity is low in subjects with recent-onset gout. A meta-analysis of 17 studies showed a pooled sensitivity and specificity of 0.85 and 0.88, respectively. DECT is a useful diagnostic tool for patients with contraindications for joint aspiration or for those who refuse joint aspiration. This article aims to give an up to date review and summary of existing literature on the role and accuracy of DECT in the imaging of gout. (www.actabiomedica.it)

    The β-1,3-glucanosyltransferases (Gels) affect the structure of the rice blast fungal cell wall during appressorium-mediated plant infection

    Get PDF
    The fungal wall is pivotal for cell shape and function, and in interfacial protection during host infection and environmental challenge. Here, we provide the first description of the carbohydrate composition and structure of the cell wall of the rice blast fungus Magnaporthe oryzae. We focus on the family of glucan elongation proteins (Gels) and characterize five putative β‐1,3‐glucan glucanosyltransferases that each carry the Glycoside Hydrolase 72 signature. We generated targeted deletion mutants of all Gel isoforms, that is, the GH72+, which carry a putative carbohydrate‐binding module, and the GH72− Gels, without this motif. We reveal that M. oryzae GH72+ GELs are expressed in spores and during both infective and vegetative growth, but each individual Gel enzymes are dispensable for pathogenicity. Further, we demonstrated that a Δgel1Δgel3Δgel4 null mutant has a modified cell wall in which 1,3‐glucans have a higher degree of polymerization and are less branched than the wild‐type strain. The mutant showed significant differences in global patterns of gene expression, a hyper‐branching phenotype and no sporulation, and thus was unable to cause rice blast lesions (except via wounded tissues). We conclude that Gel proteins play significant roles in structural modification of the fungal cell wall during appressorium‐mediated plant infection

    Advanced diagnostic imaging and intervention in tendon diseases

    Get PDF
    Degenerative tendon pathology represents one of the most frequent and disabling musculoskeletal disorders. Diagnostic radiology plays a fundamental role in the clinical evaluation of tendon pathologies. Moreover, several minimally invasive treatments can be performed under imaging guidance to treat tendon disorders, maximizing the efficacy and reducing procedural complications. In this review article we describe the most relevant diagnostic features of conventional and advanced US and MRI imaging in tendon disorders, along with the main options for image-guided intervention. (www.actabiomedica.it)

    Noncanonical Fungal Autophagy Inhibits Inflammation in Response to IFN-γ via DAPK1

    Get PDF
    Defects in a form of noncanonical autophagy, known as LC3-associated phagocytosis (LAP), lead to increased inflammatory pathology during fungal infection. Although LAP contributes to fungal degradation, the molecular mechanisms underlying LAP-mediated modulation of inflammation are unknown. We describe a mechanism by which inflammation is regulated during LAP through the death-associated protein kinase 1 (DAPK1). The ATF6/C/EBP-β/DAPK1 axis activated by IFN-γ not only mediates LAP to Aspergillus fumigatus but also concomitantly inhibits Nod-like receptor protein 3 (NLRP3) activation and restrains pathogenic inflammation. In mouse models and patient samples of chronic granulomatous disease, which exhibit defective autophagy and increased inflammasome activity, IFN-γ restores reduced DAPK1 activity and dampens fungal growth. Additionally, in a cohort of hematopoietic stem cell-transplanted patients, a genetic DAPK1 deficiency is associated with increased inflammation and heightened aspergillosis susceptibility. Thus, DAPK1 is a potential drugable player in regulating the inflammatory response during fungal clearance initiated by IFN-γ

    Butyrate prevents visceral adipose tissue inflammation and metabolic alterations in a Friedreich's ataxia mouse model

    Get PDF
    Friedreich's ataxia (FA) is a neurodegenerative disease resulting from a mutation in the FXN gene, leading to mitochondrial frataxin deficiency. FA patients exhibit increased visceral adiposity, inflammation, and heightened diabetes risk, negatively affecting prognosis. We investigated visceral white adipose tissue (vWAT) in a murine model (KIKO) to understand its role in FA-related metabolic complications. RNAseq analysis revealed altered expression of inflammation, angiogenesis, and fibrosis genes. Diabetes like traits, including larger adipocytes, immune cell infiltration, and increased lactate production, were observed in vWAT. FXN downregulation in cultured adipocytes mirrored vWAT diabetes-like features, showing metabolic shifts toward glycolysis and lactate production. Metagenomic analysis indicated a reduction in fecal butyrate-producing bacteria, known to exert antidiabetic effects. A butyrate-enriched diet restrained vWAT abnormalities and mitigated diabetes features in KIKO mice. Our work emphasizes the role of vWAT in FA-related metabolic issues and suggests butyrate as a safe and promising adjunct for FA management

    Sjögren's syndrome: comparison among the main imaging techniques in the study of major salivary glands

    Get PDF
    Sjögren's syndrome (SS) is a chronic inflammatory disease with an autoimmune etiology, that affects exocrine glands, in particular salivary and lacrimal glands. Among the diagnostic criteria of SS, imaging techniques play an important role. The aim of our study is to compare three imaging techniques, such as sonography, scintigraphy and sialography in the evaluation of major salivary glands. The use of the these techniques is of great importance for the diagnosis of SS. Sonography is the most frequently used for its prompt execution, non invasivity, great acceptance by the patient and low cost. In the diagnostic patient management of SS, sonography results are eventually confirmed by the other imaging techniques, sialography and scintigraph

    Disulfide bond structure and domain organization of yeast beta(1,3)-glucanosyltransferases involved in cell wall biogenesis

    Get PDF
    The Gel/Gas/Phr family of fungal \u3b2(1,3)-glucanosyltransferases plays an important role in cell wall biogenesis by processing the main component \u3b2(1,3)-glucan. Two subfamilies are distinguished depending on the presence or absence of a C-terminal cysteine-rich domain, denoted "Cys-box." The N-terminal domain (NtD) contains the catalytic residues for transglycosidase activity and is separated from the Cys-box by a linker region. To obtain a better understanding of the structure and function of the Cys-box-containing subfamily, we identified the disulfide bonds in Gas2p from Saccharomyces cerevisiae by an improved mass spectrometric methodology. We mapped two separate intra-domain clusters of three and four disulfide bridges. One of the bonds in the first cluster connects a central Cys residue of the NtD with a single conserved Cys residue in the linker. Site-directed mutagenesis of the Cys residue in the linker resulted in an endoplasmic reticulum precursor that was not matured and underwent a gradual degradation. The relevant disulfide bond has a crucial role in folding as it may stabilize the NtD and facilitate its interaction with the C-terminal portion of a Gas protein. The four disulfide bonds in the Cys-box are arranged in a manner consistent with a partial structural resemblance with the plant X8 domain, an independent carbohydrate-binding module that possesses only three disulfide bonds. Deletion of the Cys-box in Gas2 or Gas1 proteins led to the formation of an NtD devoid of any enzymatic activity. The results suggest that the Cys-box is required for proper folding of the NtD and/or substrate binding
    corecore